model-training-and-deployment
1. 环境设置
1.1 安装 YOLO 训练环境
参考官方 ultralytics 安装指南。通过 Docker 安装:
sudo docker pull ultralytics/ultralytics:latest-export
1.2 进入 Docker 容器(使用 GPU)
sudo docker run -it --ipc=host --runtime=nvidia --gpus all -v ./your/host/path:/ultralytics/output ultralytics/ultralytics:latest-export /bin/bash
1.3 验证 YOLO 环境
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' device=0
Downloading https://github.com/ultralytics/assets/releases/download/v8.3.0/yolov8n.pt to 'yolov8n.pt': 100% ━━━━━━━━━━━━ 6.2MB 1.6MB/s 4.0s
Ultralytics 8.3.213 🚀 Python-3.11.13 torch-2.8.0+cu128 CUDA:0 (NVIDIA A800 80GB PCIe, 81051MiB)
YOLOv8n summary (fused): 72 layers, 3,151,904 parameters, 0 gradients, 8.7 GFLOPs
Downloading https://ultralytics.com/images/bus.jpg to 'bus.jpg': 100% ━━━━━━━━━━━━ 134.2KB 1.2MB/s 0.1s
image 1/1 /ultralytics/bus.jpg: 640x480 4 persons, 1 bus, 1 stop sign, 64.5ms
Speed: 4.9ms preprocess, 64.5ms inference, 117.6ms postprocess per image at shape (1, 3, 640, 480)
Results saved to /ultralytics/runs/detect/predict
💡 Learn more at https://docs.ultralytics.com/modes/predict
1.4 安装 NE301 项目部署环境
要将模型部署到 NE301 设备,需要设置项目开发环境。请参考项目根目录中的开发环境设置文档进行环境设置。
目前,Camthink NeoEyes NE301 AI Camera 固件已全部开源,想了解更多可查看——NE 301开源地址。
2. 训练和导出模型
2.1 训练模型(可选)
# 基于 COCO 预训练模型
yolo detect train data=data.yaml model=yolov8n.pt epochs=100 imgsz=256 device=0
# 或从头开始训练
yolo detect train data=data.yaml model=yolov8n.yaml epochs=100 imgsz=256 device=0